Courses

Select Categories

Iks Menu
Cannot get WordPress menu (id = 2270)

We found 194 courses available for you
See
-67%

Excel Data Analysis and Visualization – Transforming Data into Visual Stories with Excel

20 hours
Beginner

“Excel Data Analysis and Visualization – Transforming Data into Visual …

What you'll learn
Week 1: Advanced Excel for Data Analysis (4 Hours)
Session 1 (2 Hours): Excel Refresher and Introduction to Advanced Features
Quick Review of Basic Excel Functions
Introduction to Advanced Data Functions and Formulas
Managing and Organizing Data in Excel
Session 2 (2 Hours): Data Analysis Techniques in Excel
Data Validation and Conditional Formatting
Advanced Data Analysis with PivotTables and PivotCharts
Introduction to Excel's Data Analysis ToolPak
Week 2: Data Visualization in Excel (6 Hours)
Session 3 (2 Hours): Creating Basic Charts and Graphs
Types of Charts in Excel and When to Use Them
Customizing Charts and Graphs
Best Practices in Data Visualization
Session 4 (2 Hours): Advanced Charting Techniques
Advanced Chart Types (e.g., Waterfall, Sunburst, Histogram)
Dynamic and Interactive Charts
Using Sparklines and Conditional Formatting for Visualization
Session 5 (2 Hours): Dashboard Creation in Excel
Principles of Dashboard Design
Integrating Multiple Data Sources into a Dashboard
Interactive Elements in Dashboards (e.g., Slicers, Form Controls)
Week 3: Advanced Data Manipulation and Analysis (6 Hours)
Session 6 (2 Hours): Utilizing Advanced Excel Functions
Exploring Advanced Functions (e.g., INDEX, MATCH, OFFSET)
Introduction to Array Formulas
Text and Date Functions for Data Preparation
Session 7 (2 Hours): Introduction to Macros and VBA
Basics of Excel Macros for Automation
Introduction to VBA (Visual Basic for Applications)
Simple VBA Scripts for Data Analysis
Session 8 (2 Hours): Solving Real-World Business Problems
Applying Excel Skills to Business Case Studies
Data Analysis Techniques in Real-World Scenarios
Group Exercise on Business Data Analysis
Week 4: Integrating Excel with Other Tools and Capstone Project (4 Hours)
Session 9 (2 Hours): Excel Integration with External Data Sources
Importing and Exporting Data from/to Different Formats
Connecting Excel with Databases and Web Data
Excel and Power BI Integration Basics
Session 10 (2 Hours): Capstone Project and Course Wrap-Up
Final Project: Creating a Comprehensive Business Analysis Report using Excel
Presentation of Capstone Projects
Course Summary and Pathways for Further Learning
Each session should include a mix of theoretical instruction and hands-on exercises, progressively building in complexity. The capstone project should involve a comprehensive task that requires students to apply all the skills they've learned, ideally focusing on a real-world business scenario. This structure ensures that MBA students not only gain technical proficiency in Excel for data analysis and visualization but also understand how to apply these skills in a business context.
-68%

Financial Modeling and Valuation – Crafting Financial Blueprints and Value Assessments

20 hours
Beginner

Financial Modeling and Valuation – Crafting Financial Blueprints and Value …

What you'll learn
Week 1: Introduction to Financial Modeling (4 Hours)
Session 1 (2 Hours): Basics of Financial Modeling
Introduction to Financial Modeling: Concepts and Applications
Overview of Financial Statements (Income Statement, Balance Sheet, Cash Flow Statement)
Building a Basic Financial Model in Excel
Session 2 (2 Hours): Best Practices in Financial Modeling
Spreadsheet Design and Best Practices
Ensuring Accuracy and Integrity in Financial Models
Basic Excel Functions and Tools for Financial Modeling
Week 2: Advanced Financial Modeling Techniques (6 Hours)
Session 3 (2 Hours): Cash Flow Projections and Forecasting
Techniques for Projecting Income Statement and Balance Sheet
Building a Cash Flow Statement from Projections
Sensitivity Analysis and Scenario Building
Session 4 (2 Hours): Advanced Excel Techniques for Financial Modeling
Advanced Functions and Formulas in Excel
Data Validation, What-If Analysis, and Goal Seek
Introduction to Macros and VBA for Automation
Session 5 (2 Hours): Financial Modeling for Decision Making
Case Studies: Financial Modeling in Mergers and Acquisitions, Project Finance, and Valuation
Analyzing Financial Models for Strategic Decisions
Week 3: Valuation Techniques and Applications (6 Hours)
Session 6 (2 Hours): Introduction to Valuation Methods
Overview of Valuation Techniques: DCF, Comparables, Precedent Transactions
Discounted Cash Flow (DCF) Valuation Model
Cost of Capital: WACC and CAPM
Session 7 (2 Hours): Comparable Company Analysis (CCA) and Precedent Transactions
Performing a Comparable Company Analysis
Precedent Transaction Analysis: Methodology and Application
Case Study: Valuation using CCA and Precedent Transactions
Session 8 (2 Hours): Real-world Valuation Challenges
Dealing with Uncertainty and Risk in Valuation
Valuation of Startups and Non-traditional Companies
Impact of Economic and Market Conditions on Valuation
Week 4: Practical Application and Capstone Project (4 Hours)
Session 9 (2 Hours): Integrating Financial Modeling and Valuation into Business Strategy
Strategic Implications of Financial Models and Valuations
Communicating Results: Making Effective Financial Presentations
Ethical Considerations in Financial Modeling and Valuation
Session 10 (2 Hours): Capstone Project and Course Wrap-Up
Group Project: Developing a Comprehensive Financial Model and Valuation for a Real or Simulated Company
Presentation of Capstone Projects
Course Summary and Pathways for Further Learning
Each session should include a mix of theoretical instruction, case studies, and hands-on exercises, primarily in Excel. The capstone project in the final week would involve applying all the learned concepts to a comprehensive financial modeling and valuation exercise, providing practical experience in the application of these skills. This structure ensures that MBA students not only acquire technical financial modeling and valuation skills but also understand how to apply these skills in real-world business scenarios.
Free
What you'll learn
Week 1: Introduction to Data Analytics and Basic Statistics (4 Hours)
Session 1 (2 Hours): Introduction to Data Analytics
Overview of Data Analytics in Business
Role of Data Analytics in Decision-Making
Introduction to Statistical Concepts
Session 2 (2 Hours): Basics of Descriptive Statistics
Measures of Central Tendency (Mean, Median, Mode)
Measures of Variability (Range, Variance, Standard Deviation)
Data Visualization Basics (Histograms, Box Plots)
Week 2: Exploratory Data Analysis and Inferential Statistics (6 Hours)
Session 3 (2 Hours): Exploratory Data Analysis (EDA)
EDA Techniques
Understanding Data Distributions
Introduction to Statistical Software (e.g., R, Python)
Session 4 (2 Hours): Probability and Probability Distributions
Basic Probability Concepts
Discrete and Continuous Distributions (e.g., Binomial, Normal)
Session 5 (2 Hours): Basics of Inferential Statistics
Sampling and Estimation
Hypothesis Testing Concepts
Introduction to Regression Analysis
Week 3: Advanced Statistical Techniques (6 Hours)
Session 6 (2 Hours): Linear Regression Analysis
Simple and Multiple Linear Regression
Interpreting Regression Output
Assumptions and Diagnostics in Regression
Session 7 (2 Hours): Time Series Analysis and Forecasting
Components of Time Series Data
Moving Averages, Smoothing Techniques
Introduction to ARIMA Models
Session 8 (2 Hours): Decision Trees and Clustering
Basics of Classification and Clustering
Introduction to Decision Trees
Basics of K-Means Clustering
Week 4: Application of Data Analytics in Business (4 Hours)
Session 9 (2 Hours): Data Analytics in Finance and Marketing
Case Studies in Financial Analytics
Market Analysis and Consumer Behavior Studies
Session 10 (2 Hours): Capstone Project and Course Wrap-up
Application of Learned Techniques to a Business Case
Group Project Presentation
Course Summary and Path Forward for Further Learning
Each session would ideally include a mix of lecture, discussion, and hands-on exercises using statistical software. The capstone project in the final session should be a comprehensive task that requires students to apply all the skills they've learned, ideally focusing on a real-world business scenario. This structure ensures that MBA students not only understand the theoretical underpinnings of statistical analysis but also how to apply these techniques in a business context.
-33%

Global Entrepreneurship Trends

1 Lesson
18.5 hours
Beginner

Global entrepreneurship trends are characterized by a blend of technological …

What you'll learn
Understand the dynamics of the global entrepreneurship landscape, including trends and challenges.
Explore the impact of emerging technologies on entrepreneurial ventures worldwide.
Analyze the influence of cross-cultural factors on entrepreneurial decision-making.
Assess global funding and investment trends shaping the entrepreneurial ecosystem.
Examine the role of government policies and regulations in shaping global entrepreneurship.
Develop skills for global networking and collaboration in the entrepreneurial context.
Explore trends in social entrepreneurship and its contribution to addressing global challenges.
-27%

Introduction to Operations Management

8 Lessons
16 hours
Beginner

This comprehensive course offers a foundational understanding of Operations Management, …

What you'll learn
Define and explain the key concepts and terminologies related to Operations Management.
Identify the role and significance of Operations Management within different types of organizations.
Analyze various operations strategies and their impact on business performance.
Evaluate the importance of process design, capacity planning, and quality management.
Apply quantitative techniques and tools to solve operational problems.
Understand the role of technology and innovation in modern Operations Management.
Discuss sustainability and ethical considerations in operations.
Featured
-48%
What you'll learn
Understanding Global Market Entry:
Define global market entry and its significance for businesses.
Explore the key factors influencing the decision to enter global markets.
Types of Market Entry Strategies:
Identify and analyze various market entry strategies.
Understand the differences between exporting, licensing, franchising, joint ventures, and wholly-owned subsidiaries.
Cultural and Regulatory Considerations:
Explore the cultural and regulatory factors impacting global market entry.
Understand how businesses adapt strategies to different cultural and legal environments.
Market Research and Analysis:
Discuss the importance of thorough market research and analysis in global market entry.
Identify key considerations for assessing the feasibility of entering specific markets.
Risk Management in Global Expansion:
Understand the risks associated with global market entry.
Explore strategies for mitigating risks and ensuring successful market penetration.
Case Studies of Successful Market Entries:
Analyze real-world case studies of successful global market entry strategies.
Extract lessons and insights from these cases.
Strategic Alliances and Partnerships:
Explore the role of strategic alliances and partnerships in global market entry.
Discuss collaborative approaches to entering new markets.
Adapting Marketing Strategies:
Discuss how businesses adapt marketing strategies for global market entry.
Explore localization and customization of marketing efforts.
Technology and Global Market Entry:
Understand how technology facilitates global market entry.
Explore the role of e-commerce and digital platforms in reaching international audiences.
Developing a Global Market Entry Plan:
Learn how to develop a comprehensive global market entry plan.
Understand the essential components and steps for successful international expansion.
-55%

Introduction to Operations Management

2 hours
Intermediate